UNCLASSIFIED

AD NUMBER

AD095266

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Apr 1956. Other requests shall be referred to Chemical Warfare Labs., Army Chemical Center, MD.

AUTHORITY

USACES ltr, 22 Jan 1982; CSL APG ltr, 1 Dec 1982 THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

UNCLASSIFIED

M 95266

Best Available Copy

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

Pest Available Copy

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON ON CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SALL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

BEST

AVAILABLE

の間にはいいます。

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONTRACT NO: DA-18-108-CML-5839

MONTHLY REPORT NO: 6

PERIOD: MARCH 1 - 31, 1956

PITTSBURGH COKE & CHEMICAL COMPANY

MAY . 6 1956

DATE: April 26, 1956

56AA 20842

With the Bullet

MONTHLY REPORT NO: 6

CONTRACT NO: DA-18-108-CML-5839

PERIOD: MARCH 1 - 31, 1956

PITTSBURGH COKE & CHEMICAL COMPANY

PERSONNEL: J. S. Mackay

- Part Time - Technical Representative

S. B. Smith - Part Time

B. B. Cooper - Full Time
D. J. Griffiths - Part Time
R. Kocis - Part Time

Man Hours - 488

ABSTRACT:

ASC Whetlerite:

The results this month are of very doubtful value. We had not taken the precaution of purifying the air used during equilibration since the compressor intake was in a non-vapor contaminated area in a room away from any other operations. During much of the equilibration in this period the compressor room was being painted and, unfortunately no one thought about curbon contamination until an explanation for unexpected results was necessary. We are reporting the results obtained, but feel that the only conclusion is that organic vapors make all the ageing materials give equivalent results. This in itself is rather interesting, if we knew what to make of it.

Mustard:

Calculations were made on the amount of mustard adsorbed to get a monomolecular layer on PCC CWS carbon and then the amounts adsorbed assuming no adsorption for pores below designated diameters. This would give us an idea as to what effect impregnants could have on desorption by occupying pores and, secondly what part of any mustard loading might be expected to be in outer pores. The mustard molecule was assumed to be cubic and have normal liquid density. Using available area from 10 Å pores and up 67 g. of H/100 g. of C would give a monofilm, from 16 Å pores and up 53 g., 20 Å and up 1h g. of H, 30 Å and up 3 g. of H, etc. We have studied desorption at H loadings from about 5 to 50 g./100 g. of C. As an approximation complete void or pore filing would be around 110 g. of H/100 g. of C.

A number of impregnations and treatments were given carbon and mustard desorption measured from them. About the same results as have been previously reported resulted. Impregnants generally increase the desorption rate. Treatments with aqueous acid solutions were generally beneficial, however. The results with non-volatile acids where acid was retained by the carbon, i.e., $\rm H_2SO_4$ and $\rm H_3FO$. Gave only moderate to no effect. The volatile acids $\rm HC1$, $\rm HNO_3$, $\rm CH_3COCH$ gave definite improvement in most cases. In the latter case no acid was retained as measured by weight change of the carbon. Acids

CONFIDENTIAL

absorbed in the pore structure probably balance the surface effect by occupying space otherwise available for mustard. Of course, we are measuring rate of reaction more than equilibrium so diffusion from inner pores would presumably always show reduced rates by our method.

ASC Whetlerite, V_2O_5 , $Hg(CN)_2$, $HgBr_2$, MoO_3 all showed increased desorption as did ethanolamine and sulfamic acid. Of the volatile acids, HNO_3 showed the least desorption after a long time. If any nitric acid were retained it would exidize mustard. The carbon ash nitrates might also exidize mustard. Since the initial rate was the same as HCl and acetic acid there would be no advantage in the use of nitric acid.

On the possibility that acid washing removes ash which increased description, strong HCl solution was used several times on carbon. No increased benefit was obtained.

CONCLUSIONS:

- 1. Several inorganic salts or oxides had the same general effect as organic materials in increasing the desorption rate of mustard from carbon.
- 2. Treatment of carbon with volatile acids decreases the desorption rate, while treatment with non-volatile acids have only minor effects.

RESULTS:

ASC Whetlerite:

The whetlerites tested this month were described last month. Equilibration, ageing and testing were done under standard test conditions already described. Equilibration at 80% RH to constant weight takes around 20 + hours, so we normally run for his to his hours. Air flow is about 3.5 1./min. and thus around 10,000 liters of air are used. During the period of last month the room containing the compressor and the laboratory was being painted. The effect of organic vapors on carbon is obvious and we have always been careful in make-up and drying to avoid any contamination. CK tests are run in an area where no organic work is done and it was felt unnecessary to treat the air. For some reason the paint solvent problem did not occur to us until after the tests. As can be seen in Figure 1 and Table I, results indicate no advantage of soda ash treatment as did earlier data. However, ageing at 50°C. was more severe than usual. At present we are assuming that adsorbed organic vapors have changed the picture and are making no conclusions.

Chromate analysis are not complete in this series. Those available are reported in Table II. We hesitate to draw conclusions from them but there is an indication that Cr⁺⁶ reduction during ageing is not the reason for the results on CK life and that another effect such as the paint solvent adsorption is responsible for our results.

· · · · · · · · · · · · · · · · · · ·						vāced:	
				ile	1	ED & DAY	
				202	, 4 . A.	3ED 24 HOW	es AT 650
-i eze-		<u> </u>		X	A Land	ED 24 HOL	IRS AT 80°
				100 p			
1200				19/0			
782				Å¢ /		-4Ap	
			-	السا	44	0,0	
-W165 -			/c	A		7	
::: 33 			///		, 10x VI		
3140-			1/1	0	4 3 7		
2/20				000			
				10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 ×		
र्१७० -				2 × ×	C V		
- 4.80			11 !	A STATE OF THE STA		1	
(1.80 ··		4	/ - X	()))))))))))))))))))			2507
4 40						4	5%
ŭ 40	Li.	-9	*			4	10%
U.40					مود مرد مود مرد _{مود}	010%	
70				7	٠, ٠		
			Č				
0	<u> </u>				7 9		
	4	3 3 4 300 Des	TW 14 C	ם ונג ז ור עב די			
11 1	CK LINE	es of	POME L.	ABORATO	ey/na	REGNAT	ONS.
	:	OF	PCVC	CARBOI	/		
:							
	a / SC	STANDARA	8040710	M			
	- ASEN-	1		PLU.	5 0.8%	NA, CO3	
;	X ASCN	-7- "			0.08%	*	
:	A ASCN	1	4		50% 20%		
	· ASCN		# · ·	9	0.2%	**	
	D ASCH		e,	1 24	8.2%	WAOH	
					i		
				:			

TABLE I

CK TUBE TESTS

Sample		Bed Depth 	Mg. CK	Equil: ; Weight	Corrected Life min.	Mg. CK per	Net Weight Change, m
ASCN-4 (Standard Solution plus 2% Na ₂ CO ₃) Initial Life	•	5.0 6.0	721 958	9.5343 11.4325	115,5 153.5	75.6 83.8	- 93.8 - 62.8
Aged 24 hours at 65°C.	•	6.0 9.0 9.0 11.0	445 870 614 944	11.4176 17.1239 16.9921 20.7683	71.3 139.5 98.3 151.2	39.0 50.7 36.1 45.5	+ 69.8 + 88.8 +158.9 +250.3
Aged 24.5 hours at 65°C.		6.0	338	11.5377	54.1	2 9.2	+101.1
ASC-5 (Standard Solution) Aged 24 hours at 65°C.	•	6.0 7.7 9.0	463 721 977	11.2594 14.4498 16.8823	74.1 115.4 156.6	41.1 49.9 57.8	+ 53.3 + 84.3 +100.5
Aged 24.5 hours at 65°C.		6.0 8.1	401 623	11.4238 15.3756	6կ .1 99 . 6	35.1 40.5	- -
ASCN-6 (Standard Solution plus 0.8% Na ₂ CO ₃) Aged 2h hours at 65°C.	•	6.0 10.0	328 1 048	11.272k 18.8854	52.6 167.7	28.1 55.4	+ 80.8 +225.6
Aged 24.5 hours at 65°C.		6.0 7.8	366 638	11.6843 15.1243	58.5 102.4	31.4 42.4	-
Aged 6 days at 50°C.	•	6.0	284	11.3736	45.5	25. 0	-
ASCN-7 (Standard Solution plus 8.2% NaOH) Aged 6 days at 50°C.	•	6.0	25 0	11.9796	110.0	20.9	+ 33.4

Above tests run at 80-80 RH, 1.56 1pm, h.00 mg. CK per liter Tube cross section = 2.77 sq. cm.

[•] Designates samples equilibrated while painters were in building.

- 4 -

TABLE II

CHROMATE ANALYSIS

	% Na,CO,	% CrO ₃ Unequili- brated	% CrO ₃ Aged 6 days <u>AR</u>	50° Dry	% CrO ₃ Aged 24 hours 65° AR Dry	% CrO ₃ Aged 24 hours AR	80° Dry
ASCH-6 ASCH-4	0 0.8 2	2.22 2.08 2.05	1.53 1.29	1.74 1.46	1.64 1.30 (24.5 hrs.)		
ASCN-3 ASCN-7	5 10	1.95 3.08	1.78	1.88	/ent/ mev/	0.56 0.6 2	0.88 0.86

The whetlerites were leached by shaking three hours in 100 ml. 7N $\rm MH_4OH$. Dilutions were made and optical density read on spectrophotometer. The results were corrected to a dry weight basis by drying duplicate samples and determining amounts of moisture present.

Results are expressed as percent CrO₃.

Mustard:

For purposes of general information calculations were made to find the assumt of mustard adsorbed on CWS carbon assuming a monomolecular film on the surface. The carbon surface area was taken from the pore diameter, cumulative surface area curve determined from the water adsorption isotherm. Thus the amount of H adsorbed from the area available on pores above 10 Å, 15 Å, 20 Å diameter was determined and the results are plotted in Figure 2.

The volume of one molecule of mustard assuming normal liquid density is 207 cubic Angstroms. Assuming cubic form the area of one face is 35 Å2 and the side is 5.9 Å. Since 67 g. of H as a monolayer can be picked up by 100 g. of carbon on pores above 10 Å diameter, it should be possible to make mustard adsorption irreversible at room temperature by surface treatment of the carbon. However, pore plugging would have to be avoided and the preferred situation would be alteration of atoms only. For example, removing any polar bonds so that the ethylene group of the H would be held by C.

WARRIDENTIAL

Best Available Copy

MUSTARD:

Procedure:

A. The samples for this month, consisting of inorganic impregnants, acid dips, acid washes and organic impregnants were prepared following the procedure outlined in Monthly Report No. 5. This procedure should be corrected in that the samples were dried overnight rather than for three hours.

The adsorption of mustard was completed by placing the carbon treated sample in flat glass containers and then in a desiccator over mustard.

B. The rate of water desorption of mustard was determined following the procedures reported in Monthly Report No. 4.

Results:

The following tables summarize the results of the desorption runs using various loadings and dipping solutions. The figures are graphical interpretations of the same tables. The reference lines for ordinary CWS carbon at 10% and 20% mustard loading were taken from Monthly Report No. 5, Figure 4:

Due to an error in selection of carbon, samples of whetlerite were impregnated with various concentrations of thiodiglycol. Upon placing these samples in an owen for drying, it was found that a reaction had taken place for, the carbon was completely asked at a temperature below 105°C.

TABLE III

DESORPTION OF MUSTARD FROM CARBON (WHETLERITE)

Whetlerite = 2.0000 g.
"H" = 0.4057 g. H/C = 20.3%
H₂O = 400 cc.

Sample No.	Time Min.	"H" Desorbed Mg.	"H" Described Wt. %
1	60	25.8	6.4
2	7 0	25.4	6.3
3	130	3 9.9	9.3
4	205	52.9	13.0
5	265	60.7	15.0
6	335	69.0	17.0
7	390	74.2	18.3
8	450	77.1	19.0
9	1515	102.6	25.3

TABLE IV

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% NHaVO, Solution)

CWS Carbon - 1.9380 g. NH_4NO_3 - 0.0629 g. "H" - 0.7800 g. - H/C = 40.2% H_2O - 400 cc.

Sample No.	Time Min.	"H" Desorbed	"H" Desorbed
1	20	41.7	5.4
2	80	89.1	11.4
3	155	125.5	16.1
Ĺ	215	139.2	17.8
5	275	178.3	22.9
6	335	190.8	24.5
7	1450	340.5	43.7

TABLE V

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% Hg(CN), Solution)

CWS Carbon - 1.713 g. Hg(CN)₂ - 0.291 g. "H" - 0.2625 g. - H/C - 15.3% H₂O - 400 cc.

Sample No.	Time Min.	"H" Desorbed Mg.	"H" Desorbed Wt. A
1	45	10.6	4.0
2	120	17.0	6.4
3	180	19.1	7.3
Ĭı	240	23.9	9 .1
5	300	26.3	10.0
6	360	31.5	12.0
7	1470	49.4	18.8

TABLE VI

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% HgBr, Solution)

CWS Carbon = 1.596 g. HgBr₂ = 0.404 g. - HgBr₂/C = 25.3% "H" = 0.2696 g. - H/C = 16.9% H₂O = 400 cc.

Sample No.	Time Min.	"H" Desorbed	"H" Desorbed Wt. %
1	3 0	5.3	1.9
2	60	6.7	2.5
3	120	10.1	3.7
4	18 0	10.8	4.0
5	240	14.3	5.3
á	300	17.6	6.5
7	360	19. 9	7.4
8	1325	31.6	11.7
9	13 85	32. 9	12.2

TABLE VII

DESORPTION OF MUSTARD FROM ASC WHETLERITE

Whetlerite - 2.0027 g.

Mustard - 0.8440 g.

(H/C = 42.1%)

Water - 400 cc.

Sample No.	Time Min.	"H" Desorbed	Wt. 3
1	35	141.6	16.8
2	95	217.8	25.8
3	125	246.1	29 . 2
<u>L</u>	1141	375.9	ш.5
5	1186	377.9	44.8
6	1291	385.6	45.7
7	1 506	399.7	47.3

CONTIDENTIAL

- 8 -

TABLE VIII

DESORPTION OF MUSTARD FROM CARBON (Dipped in CuCO₃-Cu(OH₂) Solution Basis: - 10% Cu present)

CWS Carbon		1.8017 g.	
Cu	-	0.2013 g.	- Cu/C - 11.15%
пНи	I	0.3519 g.	- H/C $=$ 19.5%
Water	-	400 cc.	,

Time Min.	"H" Described	THT Desorbed Wt. %
3 5	5.4	1.5
60	7. 9	2.2
120	11.5	3.3
180	14.1	4.0
255	17.3	5.1
		5.9
375	22.8	5 . 5
ווויס		9.2
1655		15.5
1980	61.7	17.6
	Min. 35 60 120 180 255 320 375 Ulo 1655	Min. Mg. 35 5.4 60 7.9 120 11.5 180 14.1 255 17.3 320 20.7 375 22.8 440 32.5 1655 54.3

TABLE IX

DESCRIPTION OF MUSTARD FROM CARBON (Dipped in 10% (NHa), McCa Solution)

CWS Carbon (NH ₄) ₂ MoO ₄	- 1.704 g. - 0.309 g.		
nHu	- 0.2615 g.	-	H/C = 15.4%
H ₂ O	- 400 cc.		

Sample No.	Time Min.	"H" Desorbed Ng.	Wt. %
1	3 5	4.3	1.6
2	65	5.6	2.1
3	140	9.5	3.6
4	200	13.7	5.2
5	260	13.9	5.3
6	420	15.0	5.7
7	1440	31.0	11.9
8	1500	29.4	11.2

TABLE X

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% Ethanolamine Solution)

1.115

120

CWS Carbon - 1.8500 g.

Ethanolamine - 0.1599 g.

"H" - 0.3476 g. - H/C = 18.8%

Water - 4000 cc.

"H" Desorbed Sample Time "H" Desorbed No. Min. Mg. Ht. % 1 15 6.95 2.0 45 2 11.9 3.4 3 75 17.2 4.95 7.45 Ĭ, 25.9 130 5 9.3 802 32.4 280 39.6 11.4 340 46.4 13.4 700 49.8 14.3

TABLE XI

DESORPTION OF MUSTARD FROM CARBON (Dipped in 18% Sulfamic Acid Solution)

CWS Carbon = 1.7190 g.
Sulfamic Acid = 0.2889 g.
"H" = 0.3754 g. = H/C = 21.8%

Water - 400 cc.

Sample No.	Time Min.	"H" Desorbed Mg.	THT Desorbed Wt. 5
1	15	10.2	2.7
2	45	16.4	4.4
3	100	22.1	5.9
4	182	29.4	7.8
5	235	33.6	8.9
6	295	36.9	9.8
7	355	40.8	15.7
8	415	42.1	11.2

· Open ILENIA F16. 4

Time in Minutes

TABLE XII

DESORPTION OF MUSTARD FROM CARBON (Dipped in 103 H2SO4 Solution)

CWS Carbon		1.8799 g.	
H ₂ SO ₄	_	0.1564 g	H ₂ SO ₄ /C = 8.3% H/C = 19.8%
uHu _	-	0.3719 g. =	H/C = 19.8%
H ₂ O		400 cc.	*

Sample No.	Time Min.	"H" Desorbed Mg.	"H" Desorbed Wt. %	
1	60	18.3	وينا	
2	120	23.1	6,2	
3	240	28.2	7.6	
4	300	27.7	7.5	
5	465	34.7	9.3	
6	575	36.4	ç.8	
7	1785	53.1	14.3	

TABLE XIII

DESORPTION OF MUSTARD FROM CARBON (Dipped in 20% H,SO, Solution)

CWS Curbon - 1.4723 g. H_2SO_4 - 0.54 g. - $H_2SO_4/C = 36.7\%$ "H" - 0.3280 g. - H/C = 22.3% H_2O - 400 cc.

Sample No.	Time Min.	"H" Desorbed	Wt. %
1	3 0	•	Nes
2	60	14.9	4.6
3	92	14.6	4.5
4	110	16.0	4.88
5	1105	18.6	5.67
6.	1185	19.5	5.97
7	1245	21.4	6.5
8	1555	50.9	6,4
9	1595	21.7	6.6

TABLE XIV

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% H3FO4 Solution)

CWS Carbon		1.7300 g.		
H ₃ PO ₄	-	0.277 g.	-	$H_3PO_4/C = 16.0\%$ H/C = 15.2%
uHu _	-	0.2633 g.	-	H/C = 15.2%

Sample	Time	"H" Desorbed	ਾਸ਼ਾ Desorbed
No.	Min.	Mg.	Wt. %
1 2 3 4 5 6 7 8	35 95 155 240 300 360 420 1435 1480	4.1 6.7 7.4 8.9 9.5 10.5 11.5 13.8 14.6	1.56 2.8 3.66 4.4 5.5

TABLE XV

DESCRPTION OF MUSTARD FROM CARBON (Dipped in HC1 Solution)

CWS Carbon	-	1.8458 g.			
HC1	-	0 2020 -		75 A _	90 100
"n" H₂O		0.3878 g. 400 cc.	48	H/C =	19:4%
z •	_	400 00.			

Sample No.	Time Min.	"H" Desorbed Mg.	WHN Desorbed Wt. %
1	3 0	3.2	0.83
2	75	4.0	1,0
3	165	6.0	1.6
4	225	7.4	1.9
5	285	8.0	2.1
6	350	9.1	2.3
7	1350	23.3	6.0
8	1410	23.9	6 .2
9	1515	2b.6	6.4
10	1635	25.9	6.7

TABLE XVI

DESORPTION OF MUSTARD FROM CARBON (Dipped in HAc Solution)

CWS Carbon	•	• 1.9995 g			
HAc	•			_	
пНп	-	. 0.3462 g.	-	H/C =	17.4%
H ₂ O	-	400 cc.			

Sample No.	Time Min.	"H" Desorbed Mg	"H" Desorbed
1	30	2.6	0.8
2	90	3. 9	1.1
3	13 0	5.0	1.5
4	210	5.5	1 .6
5	300	6.8	2.0
6	360	8.0	2.3
7	420	8.4	2.կ
8	450	9.2	2.7
9	1440	21.1	6.1
10	1 500	20 .6	6,0
11	1515	2 0.3	6.02
12	1575	21.7	6.3
13	1640	22.7	6.6

TABLE XVII

DESCRPTION OF MUSTARD FROM LARBON (Dipped in 10% HNO, Solution)

CWS Carbon	•	2.00k6 g.
HNO ₃	-	•
uHu	-	0.3853 - H/C = 19.2%
H ₂ O	•	μ∞ cc.

Sample No.	Time Min.	"H" Desorbed Mg.	"H" Desorbed Wt. %
1	30	3.3	0.9
2	90	4.7	1.2
3	140	5.3	1.4
4	215	6 .2	1.6
5	275	6.7	1,8
6	335	7.9	2.1
7	395	8.8	2.3
3	455	9.2	2.4
្	1435	13.5	3.5
1 0	1495	14.3	3.7
11	1555	14.3	3.8

•								:	· · · · · · · · · · · · · · · · · · ·							· · · · · ·
	•							1	, ,				.1	•		١,
								1	کر پیدا				•			
											1					
					Ī	7 4 7 5	: : t	100	MUST	AKO	De	<u>ቴ</u> ስፋዎነ	000			
		•			•						1		:			
: ' '								⊅£.	,				1			
						7.A.U'	direction.	" Ac	10 + 4	医乳乳属	7. E	ysta	#4 G			1
•	:										. :					
						and c	SANG	وهوا	16.2,	, H 4	0.,	.₩ ₂ = .	19:5	:7,		
;					ф	11	. 13	(31.9	. in 5	e i i	H/c =		0		
					Υ				_ u	. <u> </u>	1	ار در داد ماد ارد در داد ماد		1. ∠o ∪ebuli		
					. D	• •	•	E :	اه!	o 149t	104	No.	15.3	175	1	
:	•		:		À	100		, n	10%	Z Ho	12	// ₁	12.4	1.72	:	
1		• •			X	******			107	HI	٨٠.	Yc : Y	17.4	7.		
			:		•	1 11		: :	ر ۱۸۰	. uv	1	W =	160	3	1	
4 .							•		T. 1783	3 110			1	2011		
				•		· cw.		UNB	Yrung	-		Y: =	20.0	70		
4					. ,		.		:		i					1
	•						:	:		4	:	1				
ļ	*				•	1	: '			,			:			1
1				• • • •		• • • • •	:					•	• • • • •	والمستعددة		:
!								•		•	1		مسترسون		i V	
114	· .				•	•		1			خار ۱۰۰۰	الترمسيسي		<u> </u>	!	1
							: :		:	مسرن						i !
							· · · · · · · · · · · · · · · · · · ·	<u></u>	مر د اکامصور ا			<u>.</u>	1	1.	: :	
					i .	i	:			•	:	:		: .		
							سسند					:			!	
1	• •	•	•	•••		مفرزا										
1	:				· : ن	-	• •	7		•						
			• ••		الممعم		کر _،		· · · · · · ·			<u>.</u>	: . :	: · · · · · · · · · · · · · · · · · · ·		
!	•					• •	1				•		1. 1.			
				•			r • • • • • • • • • • • • • • • • • • •					.l	; •			
		• ر						:	:			1	:	;		
		1.			: 	مخ	:									
					1	:		•	:							
-	~					-		:	:						ستستبه	
-	,*			1			• • •	منسب	ا مسيرين		عدده المرا	11/2	د در	المسمية الدر سيد		X 5
				1		1	نقتعس	an in security			,	*		-		1.
			- }	٠٠٠٠٠ سُدُه		بالمستمير					ا اسم وسعار ده سا					
	#i i		*		المستمرينين									•		
1	, .,			*				مرة المديد .						<u></u>	• .	
	;		:				د سومده مدس مد	والمستناسين								<u> انتگار ان</u>
		ű	;;			ر برد. مستند						*****				
	;				مسہو							1				
	· 1 · g		. ,		5.1.											
۱į.	•	ينور	المرسر	ا سرائن						13	į.,	:		45		1
c	ئناز	* * *														
17																

Best Available Copy

Charlet Links

TABLE XVIII

DESORPTION OF MUSTARD FROM CARBON (Washed 3 times with conc. HC1)

CWS Carbon - 1.9992 g.

"H" - 0.3811 g. - H/C = 19.1%

H₂O - 400 cc.

Sample No.	Time Min.	"H" Desorbed	WHT Desorbed
1 2 3 4 5 6 7 8 9	30 60 120 150 215 275 335 385 1335 1395	5.2 6.9 10.9 12.0 16.3 19.9 24.2 26.8 51.9 54.1 60.4	1.4 1.8 2.9 3.2 4.3 5.2 6.4 7.0 13.6 14.2 15.9

TABLE XVIX

DESORPTION OF MUSTARD FROM CARBON (Dipped in 10% HC1 Solution)

CWS Carbon - 2.0011 g. "H" - 0.3684 g. - H/C = 18.1% H₂0 - 400 cc.

Sample No.	Time Min,	ини Desorbed Mg.	Wt. %
1 2 3 4 5 6	60 90 120 180 240 300 1170	4.1 6.1 8.4 9.7 12.2 15.6 37.9	1.1 1.7 2.3 2.6 3.3 4.2 10.2
8	123 0	41.3	

TABLE XX

DESORPTION OF MUSTARD FROM CARBON (D:pped in 10% HC1 Solution)

CWS Carbon - 2.0255 g. "H" - 0.1932 g. - H/C = 9.6% H_2O - 400 cc.

Sample No.	Time Min.	"H" Desorbed	"H" Desorbed Wt. %
i	21	0.6	0.3
2	60	1.4	0.7
3	180	1.8	1.0
Ĺ	5/10	2.7	1.և
5	360	3.95	2.1
6	1315	14.7	7.6
7	1365	15.1	7.8
8	1390	16.4	8.5

TABLE XXI

DESCRPTION OF MUSTARD FROM CARBON (Dipped in 10% HNO, Solution)

CWS Carbon - 2.0023 g.
"H" - 0.2158 g. - H/℃ - 10.8%
H₂O - 4∞ ec.

Sample No.	Time Min.	"H" Desorbed Mg.	"H" Desorbed Wt. %		
1	23	6.6	3. 0		
2	60	5.4	2 ្ទ		
3	180	11.1	5.1		
4	240	13.8	6.4		
5	3∞	1 6.3	7.6		
6	395	19.5	9.1		
7	1420	39.3	18.3		
9	1480	40.1	18.6		
9	1 535	3 9.8	18.5		
10	1620	38.3	17.8		

COMMENSA,

Best Available Copy

DISCUSSION:

ASC Whetlerite:

As stated in the Abstract, comments on the data on ASC Whetlerite ageing this month can be only negative. While we have not proved that organic solvent contamination was the cause of the disconserting results obtained, it containly is a very likely possibility. Painting in the compressor room was in progress during all the equilibrations after the initial tests. Equilibration at 80% RH takes 44 to 48 hours at about 3.5 1./min. so around 10,000 liters of contaminated air was used. We have placed a large carbon absorber in the air line to avoid this in the future.

Mustard:

Water soluble organics such as ethanolamine, dimethylamine and pyridine probably increase the rate of mustard desorption in water by increasing the mestard solubility particularly at the water interface. The impregnation with meterials such as ammonium vanadate and ammonium molybdate where the sait is decomposed to the oxide or hydrated oxide leaves solids which would either fill or plug inner pores. Their effect is probably more in this area than in changing the picture at the water mustard interface.

In the case of non-volatile acids such as sulfuric and phosphoric the acids on drying retreat to the inner pores, the last part to be dehydrated, and thus occupy the areas where description is slowest. Presumably the other carpon surface was benefited by acidification and the two effects balance.

Since CWS Carbon is exposed to air at relatively high temperatures after activation, one can presume the surface to be oxygenated. It is known that hydrogen treatment makes the surface more hydrophobic and CO₂ or O₂ more hydrophilic. While hydrogen ion would be expected to make the surface more hydrophilic it would probably have more tendency to bond with the negative G1 on mistard. At any rate, the effect of washing with volatile acids appears definite and while not sufficient to prevent desorption It is a lead. We expect to try ion exchange resins and CWS Carbons after hydrogen treatment in the near future.

REPORT WRITTEN BY:

Technical Representative
PITTSBURGH COKE & CHEMICAL COMPANY